Effect of Macrotyloma uniflorum on free radicals and an-tioxidants in tissues of high fructose-fed rats
Keywords:
Antioxidants; fructose diet, insulin resistance, lipid peroxidation, liver, M. uniflorumAbstract
Feeding rats with high fructose, induces insulin resistance, hyperinsulinaemia, elevation of blood glucose level and impaired glucose tolerance. Oxidative stress plays a vital role in pathology associated with insulin resistance. The present study aimed to investigate the effects of Macrotyloma uniflorum (M. uniflorum) on the oxidant-antioxidant status in liver, kidney and heart of high fructose-fed diet (HFFD) rats. Male albino Wistar rats (160-180 g) were divided into six groups. Groups I and II received control diet (Group I served as normal control, group II received M.uniflorum (1000 mg/kg). Groups III-IV received HFFD (groups IV-VI received 250, 500 and 1000 mg/kg of M. uniflorum respectively). The HFFD fed rats showed increased levels of glucose, thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD), lipid hydroperoxides (HP) and impaired antioxidant defense as evidenced by decreased in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) glutathione reductase (GR) and the levels of reduced gluatathione (GSH). Treatment with M.uniflorum to the fructose-fed rats mitigated these alterations. M. uniflorum administration for 15 days decreased glucose levels; lipid peroxidation and restored the antioxidant potential. These findings support and strengthen the utility of M. uniflorum in the management of IR and associated pathology during diabetes.
Downloads
References
Priyanga, S., S. Hemmalakshmi, S. Sowmya, B. Vidy, P. Chella Perumal, et al., 2015. In vitro Enzyme Inhibitory Evaluation and Free Radical Scavenging Potential of Ethanolic Leaf Extract of Macrotyloma uniflorum (L.). International Journal of Current Pharmaceutical Review and Research, 6(3), 169-171.
Saleh, S., N.L. Maraghy, E. Reda and W.Barakat, 2014. Modulation of Diabetes and Dyslipidemia in Diabetic Insulin-Resistant Rats by Mangiferin: Role of Adiponectin and TNF-?. Annals of the Brazilian Academy of Sciences, 86 (4),1935-1947.
Basciano, H., L. Federico and K. Adeli, 2005. Fructose, Insulin Resistance, and Metabolic Dyslipidemia. Nutrition & Metabolism, 2:5.
Pooranaperundevi, M., M.S. Sumiyabanu, P. Viswanathan, R. Sundarapandiyan, C.V. Anuradha, 2010. Insulin Resistance Induced by a High-Fructose Diet Potentiates Thioacetamide Hepatotoxicity. Singapore Medical Journal, 51, 389-398.
Chen, K.N., W.H. Peng, C.W. Hou, C.Y. Chen, H.H. Chen, et al., 2013. Codonopsis javanica Root Extracts Attenuate Hyperinsulinemia and Lipid peroxidation in Fructose-Fed Insulin Resistant Rats. Journal of Food and Drug Analysis, 21, 347-355.
Pschere. S., U. Heemann, H. Frank, 2010. Effect of Renin-Angiotensin System Blockade on Insulin Resis-tance and Inflammatory Parameters in Patients with Impaired Glucose Tolerance. Diabetes Care, 33, 914-919.
Bray. G.A., S.J. Nielsen, B.M. Popkin, 2004. Consumption of High-Fructose Corn Syrup in Beverages May Play a Role in The Epidemic of Obesity. American Journal of Clinical Nutrition, 79, 537-543.
Rutledge, A.C., K. Adeli, 2007. Fructose and the Metabolic Syndrome: Pathophysiology and Molecular Mechanisms. Nutrition Reviews, 65(1), S13-23.
Teff, K.L., S.S. Elliott, M. Tschöp, T.J. Kieffer, D. Rader, et al., 2016. Dietary Fructose Reduces Circulating Insulin and Leptin, Attenuates Postprandial Suppression of Ghrelin, and Increases Triglycerides in Women. Journal of Clinical Endocrinology and Metabolism, 89, 2963-2972.
Ka, L., and L. Tappy, 2006. Metabolic Effects of Fructose. Current Opinion in Clinical Nutrition and Metabolic Care, 9(4), 469-475.
Stanhope, K.L., J.M. Schwarz, N.L. Keim, S.C. Griffen, A.A. Bremer et al., 2009. Consuming Fructose-Sweetened, not Glucose-Sweetened, Beverages Increases Visceral Adiposity and Lipids and Decreases Insulin Sensitivity in Overweight/Obese Humans. Journal of Clinical Investigation, 119(5), 1322–1334.
Mahfouz1 M.H., H.M. Ghanem, M.A. and Mohamed, 2009. Therapeutic Effect of L-Carnitine on Sialic Acid, Soluble Fas (Sfas) and Other Biochemical Variables in Hyperinsulinemic Rats. Life Science Journal, 6(2), 76-82.
Baynes, J.W., S.R. Thorpe, 1999. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes, 48(1), 1– 9.
Droge, W., 2002. Free Radicals in the Physiological Control of Cell Function. Physiological Reviews, 82(1), 47-95.
Valko, M., D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, et al., 2007. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. International Journal of Biochemistry & Cell Biology, 9(1), 44-84.
Dal-Ros, S., J. Zoll, A.L. Lang, C. Auger, N. Keller, et al, .2011. Chronic Intake of Red Wine Polyphenols by Young Rats Prevents Aging-Induced Endothelial Dysfunction and Decline in Physical Performance: Role of NADPH Oxidase. Biochemical and Biophysical Research Communications, 404(2),743–749.
Sikora, E., I. Bodziarczyk, 2013. Influence of Diet With Kale on Lipid Peroxides and Malondialdehyde Levels in Blood Serum of Laboratory Rats Over Intoxication With Paraquat. Acta Scientiarum Polonorum Technologia Alimentaria, 12 (1), 91-99.
Castro, C., F. Francini, G. Schinella, C. Caldis, M.G. Zubiría, et al., 2012. Apocynin Administration Prevents the Changes Induced by a Fructose-Rich Diet on Rat Liver Metabolism and the Antioxidant System. Clinical Science, 692(123), 681-692.
Sreeja, S., R. Geetha, E. Priyadarshini, K. Bhavani, C.V. Anuradha, 2014. Substitution of Soy Protein for Casein Prevents Oxidative Modification and Inflammatory Response Induced in Rats Fed High Fructose Diet. ISRN Inflammation, 8, 641-646.
Kamboj, V.P., 2000. Herbal Medicine. Current Science, 78(1), 35-39.
Sen, S., R. Chakraborty, C. Sridhar, Y.S.R. Reddy, B. De, 2010. Free Radicals, Antioxidants, Diseases and Phytomedicines: Current Status and Future Prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91-100.
Kumar, D., 2006. Horsegram Research: An Introduction. In: Kumar D. (Ed.), Horsegram in India.1-10 pp.
Durga, K.K., 2012. Variability and Divergence in Horsegram (Dolichos uniflorus). Journal of Arid Land, 4(1), 71-76.
Siddhuraju, P., S. Manian, 2007. The Antioxidant Activity and Free Radical Scavenging Capacity of Dietary Phenolic Extracts from Horse Gram (Macrotyloma uniflorum (lam.) verdc.) Seeds. Food Chemistry, 105, 950-958.
Parmar, H.B., S.K. Das, K.J. Gohil, 2012. Hepatoprotective Activity of Macrotyloma uniflorum Seed Extract on Paracetamol and D-Galactosamine Induced Liver Toxicity in Albino Rats. International Journal of Pharmacy Research, 2, 86-91.
Sasaki, T., S. Matsui, A. Sonae, 1972. Effect of Acetic Acid Concentration on the Colour Reaction in the O-Toluidine Boric Acid Method for Blood Glucose Estimation. Rinshokagaku, 1, 346-353.
Niehaus, W.G. Jr., B. Samuelsson, 1968. Formation of Malondialdehyde from Phospholipid Arachidonate During Microsomal Lipid Peroxidation. European Journal of Biochemistry, 6, 126-130.
Jiang, Z.Y., J.V. Hunt, S.P. Wolff, 1992. Ferrous Ion Oxidation in the Presence of Xylenol Orange for Detection of Lipid Hydroperoxide in Low Density Lipoprotein. Anal Biochemistry, 202, 384-389.
Rao, K.S., R.O. Recknagel, 1968. Early Onset of Lipidperoxidation in Rat Liver After Carbon Tetrachloride Administration. Experimental and Molecular Pathology, 271-278.
Kakkar, P., B. Das, P.N. Viswanathan, 1984. A Modified Spectrophotometric Assay of Superoxide Dismutase. Indian J Biochemistry Biophysics, 21, 130-132.
Sinha, A.K., 1972. Colorimetric Assay of Catalase. Anal Biochemistry, 47, 389-394.
Rotruck, J.T., A.L. Pope, H.E. Gantler, A.B. Swanson, D.G. Hafeman, et al., 1973.. Selenium: Biochemical Role as a Component of Glutathione Peroxidase. Science, 179, 588-590.
Ellman, G.L., 1959. Tissue Sulphydryl Groups. Archives of Biochemistry and Biophysics, 82, 70-77.
Horn, H.P., F.H. Burns, 1978. Glutathione Reductase. In : Bergmeyer HV, Editor. Methods in Enzymology. New York: Academic Press, p. 877.
Stanhope, K.L., P.J. Havel, 2008. Fructose Consumption: Potential Mechanisms for Its Effects to Increase Visceral Adiposity and Induce Dyslipidemia and Insulin Resistance. Current Opinion in Lipidology, 19, 16-24.
Oudot, A., D. Behr-Roussel, S. Compagnie, S. Caisey O. Le Coz, et al., 2009. Endothelial Dysfunction in Insulin-Resistant Rats is Associated with Oxidative Stress and COX Pathway Dysregulation. Physiological Research, 58, 499-509.
Mohamed Salih, S., P. Nallasamy, P. Muniyandi, V. Periysamy, C.V. Anuradha, 2009. Genistein Improves Liver Function and Attenuates Non-Alcoholic Fatty Liver Disease in a Rat Model of Insulin Resistance. Journal of Diabetes, 1, 278-287.
Lavau, M., S.K. Fried, C. Susini, P. Freychet, 1979. Mechanism of Insulin Resistance in Adipocytes of Rats Fed a High-Fat Diet. Journal of Lipid Research, 20, 8-16.
Nandhini, A.T., V. Thirunavukkarasu, M.K. Ravichandran, C.V. Anuradha, 2005. Effect of Taurine on Biomarkers of Oxidative Stress in Tissues of Fructose Fed Insulin-Resistant Rats. Singapore Medical Journal, 46(2), 82-87.
Frankel,- E.N., 1987. “Secondary Products of Lipid Oxidation,” Chemistry and Physics of Lipids, vol. 44, no. 2–4, pp. 73-85.
Janero, D. R., 1990. “Malondialdehyde and Thiobarbituric Acid Reactivity as Diagnostic Indices of Lipid Peroxidation and Peroxidative Tissue Injury,” Free Radical Biology and Medicine, 9(6), 515-540.
Whiteman, M., K.M. Gooding, J.L Whatmore, C.I. Ball, D. Mawson, et al., 2010. Adiposity is a Major De-terminant of Plasma Levels of the Novel Vasodilator Hydrogen Sulphide. Diabetologia. 53, 1722-1726.
Rajasekar, P., P. Viswanathan, C.V. Anuradha, 2008. Renoprotective Action of L-Carnitine in Fructose-Induced Metabolic Syndrome. Diabetes, Obesity and Metabolism, 10, 171-180.
Rajasekar, P., M.K. Ravichandran, C.V. Anuradha, 2005. Intraperitoneal L-Carnitine Regulates Lipid Metabolism and Reduces Oxidative Stress in Fructose Induced Hyperlipidemic Rats, Diabetologia Croatica, 34, 87-94.
White, A.R., S.J. Collins, F. Maher, M.F. Jobling, L.R. Stewart et al., 1999. Prion Protein Deficient Neurons Reveal Lower Glutathione Reductase Activity and Increased Susceptibility to Hydrogen Peroxide Toxicity. American Journal of Pathology, 155, 1723-1730.
Panda VS, Kharat PS, Sudhamani S. 2015. Antioxidant and Hepatoprotective Effect of Macrotyloma uniflorum Seed in Antitubercular Drug Induced Liver Injury in Rats. The Journal of Phytopharmacology. 4(1), 22-29.
Published
How to Cite
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © Author(s) retain the copyright of this article.
