Implants for different types of cancer: an updated review


  • Rupali Sharma Department of Pharmaceutics, St. Soldier institute of pharmacy, Lidhran Campus, Behind NIT (R.E.C.), Jalandhar –Amritsar by pass, NH-1, Jalandhar -144011, Punjab, India
  • Ritu Rani Department of Pharmaceutics, St. Soldier institute of pharmacy, Lidhran Campus, Behind NIT (R.E.C.), Jalandhar –Amritsar by pass, NH-1, Jalandhar -144011, Punjab, India
  • Rajesh Kumar Department of Pharmaceutics, St. Soldier institute of pharmacy, Lidhran Campus, Behind NIT (R.E.C.), Jalandhar –Amritsar by pass, NH-1, Jalandhar -144011, Punjab, India
  • Ajeet Pal Singh Department of Pharmaceutics, St. Soldier institute of pharmacy, Lidhran Campus, Behind NIT (R.E.C.), Jalandhar –Amritsar by pass, NH-1, Jalandhar -144011, Punjab, India
  • Amar Pal Singh Department of Pharmaceutics, St. Soldier institute of pharmacy, Lidhran Campus, Behind NIT (R.E.C.), Jalandhar –Amritsar by pass, NH-1, Jalandhar -144011, Punjab, India



electrospun nanofibers, cancer treatment, drug release, nano medicine, biocompatible polymers, hyperthermia


Cancer, a significant global health concern, accounts for one in six deaths worldwide. The complex landscape of cancer treatment includes conventional approaches such as surgery, chemotherapy, and radiotherapy, as well as recent advances like stem cell therapy, targeted therapy, ablation therapy, and various nanomedicines. Notably, electrospinning has incorporated colloidal nanoparticles into polymeric NFs for drug delivery and cancer treatments. The unique contribution of this review lies in its focus on recent investigations that aim to enhance drug delivery and improve the efficiency of cancer treatments. Biomaterials have been applied to immunotherapies to modulate immune cells and the immunosuppressive tumor microenvironment, aiming to enhance both efficacy and safety. Stem cell therapy shows promise in regenerating tissues affected by cancer, while targeted therapy specifically inhibits the growth of cancer cells with minimal damage to healthy cells. This review provides an updated overview of implant applications in cancer therapies.


Download data is not yet available.


Debela, D. T., Muzazu, S. G., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., Kitui, S. K., & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE open medicine, 9, 20503121211034366.

Pons-Faudoa, F. P., Ballerini, A., Sakamoto, J., & Grattoni, A. (2019). Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomedical microdevices, 21(2), 47.

Carey, P., Low, E., Harper, E., & Stack, M. S. (2021). Metalloproteinases in Ovarian Cancer. International journal of molecular sciences, 22(7), 3403.

Li J, Luo Y, Li B, Xia Y, Wang H and Fu C (2020) Implantable and Injectable Biomaterial Scaffolds for Cancer Immunotherapy. Front. Bioeng. Biotechnol. 8:612950. doi: 10.3389/fbioe.2020.612950

Courtney, C.M.; Goodman, S.M.; McDaniel, J.A.; Madinger, N.E.; Chatterjee, A.; Nagpal, P. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 2016, 15, 529–534. [CrossRef] [PubMed]

Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

Contreras-Cáceres, R., Cabeza, L., Perazzoli, G., Díaz, A., López-Romero, J. M., Melguizo, C., & Prados, J. (2019). Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials (Basel, Switzerland), 9(4), 656.

Kaplan, J., & Rohrich, R. (2021). Breast implant illness: a topic in review. Gland surgery, 10(1), 430–443.

Esfandyari, S., Elkafas, H., Chugh, R. M., Park, H. S., Navarro, A., & Al-Hendy, A. (2021). Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. International journal of molecular sciences, 22(4), 2165.

Ribeiro, F., & Falcão, M. S. (2021). Off-Label Use of 0.19?mg Fluocinolone Acetonide Intravitreal Implant: A Systematic Review. Journal of ophthalmology, 2021, 6678364.

Thandra, K. C., Barsouk, A., Saginala, K., Padala, S. A., Barsouk, A., & Rawla, P. (2021). Epidemiology of Non-Hodgkin's Lymphoma. Medical sciences (Basel, Switzerland), 9(1), 5.

Dhar, R., Singh, S., Mukherjee, I., Pethusamy, K., Purkayastha, K., Das, P., Sharma, J. B., Shyam Sharma, R., & Karmakar, S. (2021). EMTiness in pseudo-malignant behavior of trophoblasts during embryo implantation. Frontiers in bioscience (Landmark edition), 26(4), 717–743.

Leach, D. G., Young, S., & Hartgerink, J. D. (2019). Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta biomaterialia, 88, 15–31.

Goncalves, Andrea & Balestri, Wendy & Reinwald, Yvonne. (2020). Biomedical Implants for Regenerative Therapies. 10.5772/intechopen.91295.

Oh, J.K.; Drumright, R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2008, 33, 448–477. [CrossRef]

Pelton, R.H.; Chibante, P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf. 1986,20, 247–256. [CrossRef]

Zelzer, M.; Todd, S.J.; Hirst, A.R.; McDonald, T.O.; Ulijn, R.V. Enzyme responsive materials: Design strategies and future developments. Biomater. Sci. 2012, 1, 11–39. [CrossRef]

Fernández-Nieves, A.; Fernández-Barbero, A.; Vincent, B.; de las Nieves, F.J. Charge Controlled Swelling of Microgel Particles. Macromolecules 2000, 33, 2114–2118. [CrossRef]

Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R. SEER Cancer Statistics Review, 1975–2017; National Cancer Institute: Bethesda, MD, USA, 2019.

D'Souza, P. C., Kumar, S., Kakaria, A., Al-Sukaiti, R., Al-Baimani, K., Hamid, R. S., Mittal, A. K., Al-Balushi, M., Burney, I. A., & Al-Moundhri, M. S. (2021). Complications and Management of Totally Implantable Central Venous Access Ports in Cancer Patients at a University Hospital in Oman. Sultan Qaboos University medical journal, 21(1), e103–e109.

Akello, M., Coutinho, S., N-Mboowa, M. G., Bukirwa, V. D., Natukunda, A., Lubyayi, L., Nabakooza, G., Cose, S., & Elliott, A. M. (2020). Continuous research monitoring improves the quality of research conduct and compliance among research trainees: internal evaluation of a monitoring programme. AAS open research, 3, 57.

Fitzgerald, R.C., Antoniou, A.C., Fruk, L. et al. The future of early cancer detection. Nat Med 28, 666–677 (2022).

Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071.

Santini JT Jr, Cima MJ, Langer R. A controlled-release microchip. Nature. 1999;397(6717):335-338.

Kirtane AR, Kalscheuer SM, Panyam J. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev. 2013;65(13-14):1731-1747.

Smith, A. M., Moxon, S., Morris, L., McClements, L., Roper, J., O'Sullivan, S. E., ... & Donnelly, R. F. (2019). Microneedle?mediated minimally invasive patient monitoring. Advanced healthcare materials, 8(16), 1900068.

Cafferty, W. B., Gardiner, N. J., Gavazzi, I., Powell, J., Knox, J., Gillings, R., ... & Grainger, D. J. (2018). Application of a non-invasive, self-adhesive, biosensor patch for cortisol determination in hairless guinea pigs as a potential replacement for hair sampling in toxicology studies. Toxicology and applied pharmacology, 347, 77-84.

Serpooshan, V., Zhao, M., Metzler, S. A., Wei, K., Shah, P. B., Wang, A., ... & Mahmoudi, M. (2017). The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials, 146, 98-107.

Kopecek, J., & Kopecková, P. (2010). HPMA copolymers: Origins, early developments, present, and future. In Kopecek J. (Ed.), Monoclonal Antibodies in Biotechnology (pp. 5-46). Springer.

Hong, L. T. V., Mai, L. Q., & Trung, T. (2019). Applications of biocompatible hydrogels in human healthcare and regenerative medicine. Materials Science and Engineering: C, 98, 1235-1249

Velasquez, N., et al. (2019). Development and application of a customizable metal microstereotactic frame for anesthetic management and precise delivery of focused ultrasound in nonhuman primates. Journal of neuroscience methods, 312, 77-89

Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Seminars in Immunology. 2008;20(2):86-100.

Ratner BD. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. Journal of Controlled Release. 2002;78(1-3):211-8

Kucukoz B, Ozler SB, Berberoglu U. Microfluidic platforms for cancer immunotherapy. Biotechnology Journal. 2019;14(6):e1800632.

Poh MM, Lee KH, Heng PWS, Chan LY. A novel pulsatile implant for controlled release drug delivery to the inner ear. Journal of Controlled Release. 2011;156(1):6-12.

Smith, A. et al. "Targeted therapy for ovarian cancer: The rapidly evolving landscape of PARP inhibitor use." American Journal of Obstetrics & Gynecology. 2021; 225(5), B669.

Gao J, Qiu X, Li W, Lai B, Zheng J, Han X, et al. Immunoenhancement therapy for cancer with cytokine-induced killer cells. Hematology/oncology and stem cell therapy. 2019;12(4):179-184.

Gao W, Vecchio D, Li J, Zhu J, Zhang Q, Fu V, et al. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nature Communications. 2016;7:12837


15 Views | 7 Downloads

How to Cite

Sharma, R., R. Rani, R. Kumar, A. P. Singh, and A. P. Singh. “Implants for Different Types of Cancer: An Updated Review”. International Journal of Pharmaceutics and Drug Analysis, vol. 12, no. 1, Apr. 2024, pp. 72-78, doi:10.47957/ijpda.v12i1.579.



Review Articles
Share |