

International Journal of **Pharmaceutics and Drug Analysis**

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE SIMULTANEOUS DETERMINATION OF DILTIAZEM HCL AND ENALAPRIL MALEATE

Kenere Shalini¹, B. Aruna^{2*}, A.H.V Santhoshi², M Divya², B. Chaitanya²

- ¹Department of Analysis, Avanthi Institute of Pharmaceutical Sciences, Tagarapuvalasa
- ²Associate Professor, Department of Analysis, Avanthi Institute of Pharmaceutical Sciences, Tagarapuvalasa

Content Available at www.ijpda.org

Received: 04 Jan 2024 Revised: 26 Jan 2025 Accepted: 05 Mar 2025

Abstract

A simple, rapid, precise, sensitive and reproducible reverse phase high performance liquid chromatography (RP-HPLC) method has been developed for the quantitative analysis of Diltiazem HCl and Enalapril Maleate in pharmaceutical dosage form. Chromatographic separation of Diltiazem HCl and Enalapril Maleate was achieved on Waters Alliance-e2695 by using Inertsil ODS (250x 4.6mm, 5μ) column and the mobile phase containing Acetonitrile: 0.1% Formic acid in the ratio of 40:60% v/v. The flow rate was 1.0 ml/min; detection was carried out by absorption at 272nm using a photodiode array detector at ambient temperature. The number of theoretical plates and tailing factor for Diltiazem HCl and Enalapril Maleate were NLT 2000 and should not more than 2 respectively. % Relative standard deviation of peak areas of all measurements always less than 2.0. The proposed method was validated according to ICH guidelines. The method was found to be simple, economical, suitable, precise, accurate & robust method for quantitative analysis of Diltiazem HCl and Enalapril Maleate study of its stability.

[23]

Keywords: RP-HPLC, Diltiazem HCl, Enalapril Maleate, simultaneous estimation.

This article is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License. Copyright © 2025 Author(s) retains the copyright of this article.

*Corresponding Author

B. Aruna

DOI: https://doi.org/10.47957/ijpda.v13i1.620

Produced and Published by

South Asian Academic Publications

Introduction

Diltiazem, with the chemical name [(2S,3S)-5-[2-(dimethylamino)ethyl]-2-(4-methoxyphenyl)-4-oxo-2,3dihydro-1,5-benzothiazepin-3-yl] acetate hydrochloride, is used to treat hypertension and angina. Diltiazem belongs to the family of drugs known as calcium-channel blockers. It reduces cardiac output by easing tension in the blood vessels. It improves the heart's oxygen and blood flow as well [1]. (Z)-but-2-enedioic acid;(2S)-1-[(2S)-2-[[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]amino]propanoyl]pyrrolidine-2-carboxylic acid is Enalapril. Treating hypertension is the function of enalapril. Reduced risk of cardiovascular disease, renal disease, and stroke is associated with lowering blood pressure. Also, it helps avoid heart failure in patients with a specific cardiac condition (left ventricular dysfunction) and is used to treat heart failure in such patients.

An RP-HPLC approach for the measurement of Diltiazem HCl and Enalapril Maleate has been attempted, with the goal of developing a validated stability indicator. A review of the relevant literature uncovered a dearth of published analytical techniques, either alone or in conjunction with other medications. The objective is to create an RP-HPLC technique that is easy to utilize, quick and specific enough to measure Diltiazem HCl and Enalapril Maleate in bulk and prescription dose forms. To ensure that the suggested approaches are legitimate, they must meet the analytical criteria outlined in the ICH recommendations. These criteria include system appropriateness, accuracy, precision, specificity, linearity, robustness, limit of detection and limit of quantification.

Materials and Methods

Diltiazem HCl and Enalapril Maleate active pharmaceutical ingredients (API) were obtained from Spectrum Pharma Research Solutions, Hyderabad as gift samples along with their analytical reports. Acetonitrile, Methanol, Heptane Sulfonic acid and Ortho Phosphoric acid was obtained from Rankem and Commercial tablets of Diltiazem HCl and Enalapril Maleate were procured from the local drug market.

Chromatographic condition

The mobile phase consisted of Acetonitrile: 0.1% Formic acid (40:60) at a flow rate of 1.0 ml/min. Inertsil C-18 column (4.6 x250mm, 5μ particle size) was used as the stationary phase. Although the Diltiazem HCl and Enalapril Maleate have different λ max, but considering the chromatographic parameter, sensitivity and selectivity of method for both drugs, 272 nm was selected as the detection wavelength for PDA detector [2].

Preparation of standard stock solution

30 milligrams of diltiazem HCl and 10 milligrams of enalapril maleate (the working standard) was taken into a 10-milliliter clean, dry volumetric flask. Add the diluent and sonicate until fully dissolved. Fill the flask to the mark using the same solvent (Stock solution). The additional pipette Put 1 milliliter of each stock solution into a 10-milliliter volumetric flask and fill it up with diluent until it reaches the mark. (300ppm of Diltiazem HCl, 100ppm of Enalapril Maleate)

Sample preparation

198 milligrams of diltiazem HCl and 112 milligrams of enalapril maleate were accurately weighed and taken into a 10 milliliter clean and dry volumetric flask. Add the diluent and sonicate for 30 minutes to dissolve. Centrifuge for 30 minutes to thoroughly dissolve it. Finally, fill up the flask to the mark using the same solvent. The next step is an injection filter with a pore size of 0.45 microns. (Stock solution) The additional pipette transfer 1 milliliter of each stock solution to a 10-milliliter volumetric flask and fill the rest of the way with diluents. (300ppm of Diltiazem HCl, 100ppm of Enalapril Maleate)

Method validation System suitability tests

The maximum allowable tailing factor for peaks in standard solution caused by diltiazem HCl and enalapril maleate is 2.0. There should be no fewer than 2000 theoretical plates for the peaks of Diltiazem HCl and Enalapril Maleate in the standard solution. The resolution of the peaks in the standard solution corresponding to Diltiazem HCl and Enalapril Maleate must not be lower than [2].

Linearity

By appropriate aliquots of the standard Diltiazem HCl and Enalapril Maleate solutions with the mobile phase, six working solutions ranging between 75-375 $\mu g/mL$ and 25-125 $\mu g/mL$ respectively were prepared. Each experiment was performed in triplicate according to optimized chromatographic conditions³. The peak areas of the chromatograms were plotted against the concentration of Diltiazem HCl and Enalapril Maleate to obtain the calibration curve.

Accuracy

Recovery studies by the standard addition method were performed with a view to justify the accuracy of the proposed method [4]. Previously analyzed samples of Diltiazem HCl and Enalapril Maleate to which known amounts of standard Diltiazem HCl and Enalapril Maleate corresponding to 50%, 100% and 150% of label claim were added. The accuracy expressed as the percentage of analyte recovered by the proposed method.

Precision

Precision was determined as repeatability and intermediate precision, in accordance with ICH guidelines [5]. The repeatability and intermediate precision were determined by analyzing the samples of Diltiazem HCl and Enalapril Maleate. Determinations were performed on the same day as well as well as on consequent days.

Limit of detection and the limit of quantification

Limit of detection (LOD) and limit of quantification (LOD) of Diltiazem HCl and Enalapril Maleate were determined by calibration curve method⁶. Solutions of both Diltiazem HCl and Enalapril Maleate were prepared in linearity range and injected in triplicate. Average peak area of three analyses was plotted against concentration. LOD and LOQ were calculated by using following equations. LOD = (3.3 ×Syx)/b, LOQ= (10.0×Syx)/b.

Where Syx is residual variance due to regression; b is slope.

Robustness

The robustness of the method was performed by deliberately changing the chromatographic conditions⁷. The organic strength was varied by $\pm 5\%$, column temperature was varied by ± 50 c and the flow rate $\pm 0.1 \text{mL}$.

Degradation Studies Preparation of stock

After carefully weighing 198 milligrammes of Diltiazem HCl and 112 milligrammes of Enalapril Maleate, put the mixture to a 10 millilitre clean, dry volumetric flask. Add the diluent and sonicate for 30 minutes to dissolve. Centrifuge for 30 minutes to thoroughly dissolve the sample. Finally, add enough of the same solvent to fill the flask to the mark. A 0.45 micron injection filter is then used to further filter it (Stock solution).

Acid degradation, Alkali degradation, Thermal degradation, Peroxide degradation, Reduction degradation, Photolytic degradation and Hydrolysis degradation were carried out [8,9] (Table 9).

Result and Discussion

Method development: Initially reverse phase liquid chromatography separation was tried to develop using various ratios of Acetonitrile: 0.1% Formic acid as mobile phases, in which both the drugs did not responded properly, and the resolution was also poor. With 40:60 Acetonitrile: 0.1% Formic acid both drugs eluted with better separation at a flow rate of 1.0 ml/min. Inertsil C-18 column (4.6 x150mm, 5μ particle size) was used as the stationary phase was selected to improve resolution and the tailing of both peaks were reduced considerably and brought close to 1. To analyze both drugs detection were tried at various wavelengths from 210nm to 280nm. The

wavelength at which both Diltiazem HCl and Enalapril Maleate showed maximum absorption at 272nm was selected as the detection wavelength for PDA detector. The retention times were found to about 2.4 min and 3.8 min for Diltiazem HCl and Enalapril Maleate, respectively. The obtained chromatogram was shown in the figure 1.

Method Validation:

System suitability: System suitability parameters such as number of theoretical plates, retention time and peak tailing were determined. The results obtained were shown in table 1.

Linearity: Diltiazem HCl and Enalapril Maleate were showed a linearity of response between 75-450 μ g/mL and 25-150 μ g/mL (Figure 2 & Figure 3) and the linearity were represented by a linear regression equation.

Accuracy: The percentage recoveries of Diltiazem HCl and Enalapril Maleate were 99.7% and 100.0%, respectively. These results were summarized in table 2 & 3.

Repeatability: Six replicates of standard concentrations were analyzed in same day for repeatability and results were found within acceptable limits. These results were summarized in table 4.

Intermediate Precision: Six replicates of standard concentrations were analyzed on two different days and by two analysts for day to day and analyst to analyst variation and results were found within acceptable limits. These results were summarized in table 5.

Robustness: As per ICH norms, small, but deliberate variations, by altering the Flow rate, column temperature and concentration of the mobile phase were made to check the method's capacity to remain unaffected. It was observed that there were no marked changes in chromatograms, which demonstrated that the developed method was robust in nature (Table 6 & 7).

LOD and LOQ: LOD and LOQ for Diltiazem HCl were 0.54 μ g/mL and 1.8 μ g/mL and for Enalapril Maleate were 0.1 μ g/mL and 0.6 μ g/mL respectively.

Tablet Analysis: Content of Diltiazem HCl and Enalapril Maleate found in the tablets by the proposed method are shown in Table 8. The low values of RSD indicate that the method is precise and accurate.

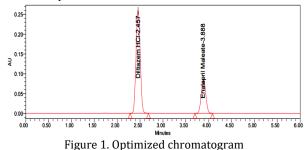


Table 1: System suitability of Diltiazem HCl and Enalapril

Maleate

S.no	no Parameter Dil		Enalapril Maleate
1	Retention time	2.457	3.888
2	Theoretical plates	16610	8935

3	Tailing factor	1.02	1.15
4	Resolution		7.75
5	%RSD	0.28	0.14

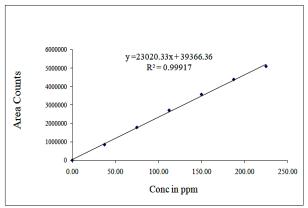


Figure 2. Calibration curve of Diltiazem

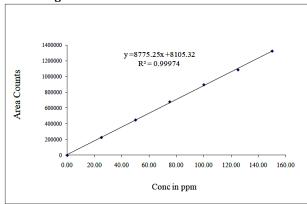


Figure 3. Calibration curve of Enalapril
Table 2: Results of Recovery Experiments of Diltiazem
HCl

		nci				
		Amo	Amo			
%Concent	Docno	unt	unt	%	Mean	
ration	Respo nse	Adde	Foun	Recov	Recov	
ration	1136	d	d	ery	ery	
		(mg)	(mg)			
	13228	15	14.9	99.4		
	84	13	06	77.4		
50%	13145	15	14.8	98.7	99.5	
	64	13	12	90.7	99.3	
	13356	15	15.0	100.3		
	38	13	49	100.5		
	26669	30	30.0	100.2		
	58	30	50	100.2	99.9	
100%	26354	30	29.6	99.0		
10070	12	30	95	77.0		
	26745	30	30.1	100.5		
	82	30	36	100.5		
150%	39865	45	44.9	99.8		
	74	73	19	77.0	99.7	
	39952	45	45.0	100.0	77./	
	87	-13	17	100.0		

39586	45	44.6	00.1	
91	45	05	99.1	

Table 3: Results of Recovery Experiments of Enalapril

% Concentr ation	Respo nse	Amo unt Adde d (mg)	Amo unt Foun d (mg)	% Recov ery	Mean Recov ery
	44915 2	5	5.015	100.3	
50%	44763 3	5	4.998	100.0	99.9
	44554 8	5	4.974	99.5	
	89654 1	10	10.00 9	100.1	
100%	89102 2	10	9.948	99.5	100.0
	89879 4	10	10.03 5	100.4	
	13487 69	15	15.05 8	100.4	
150%	13520 78	15	15.09 5	100.6	100.0
	13316 12	15	14.86 7	99.1	

Table 4: Repeatability data of Diltiazem HCl and Enalapril Maleate

Malcute							
S. No.	Diltiazem HCl	Enalapril Maleate					
3. NO.	Response	Response					
1	2668943	896421					
2	2625241	895705					
3	2669583	896978					
4	2652417	890042					
5	2678594	893130					
6	2655396	898915					
Average	2658362	895199					
Standard Deviation	18912.129	3149.547					
%RSD	0.71	0.35					

Table 5: Intermediate Precision for Diltiazem HCl and Enalapril Maleate

S. No.	Diltiaz Resp	em HCl onse	Enalapri Resp	l Maleate onse
	Day-1	Day-2	Day-1	Day-2
1	2665894	2675414	896582	894025
2	2653256	2663491	892541	893369
3	2645879	2645787	892257	897241
4	2635209	2656562	897589	895823
5	2685481	2643050	899263	891277
6	2674583	2641279	894526	894095

Average	2660050	2654264	895460	894305
Standar d Deviatio	18741.11 6	13445.92 4	2825.11 8	2053.86 5
n				
%RSD	0.70	0.51	0.32	0.23

Table 6: Robustness results of Diltiazem

	Diltiazem HCl								
Param eter	Condi tion	Reten tion time(min)	Resp onse	Tail ing	Theor etical plates	% R S D			
Flow	Less flow (0.9m l)	2.629	2510 623	0.98	16582	0. 31			
rate Chang e (mL/ min)	Actual (1.0m l)	2.457	2655 471	1.02	16610	0. 28			
	More flow (1.1m l)	2.312	2740 107	1.07	16743	0. 50			
Organ	Less Org (36:6 4)	2.807	2467 819	1.01	16524	0. 46			
ic Phase chang	Actual (40:6 0)	2.456	2671 348	1.05	16625	0. 28			
e	More Org (44:5	2.185	2955 346	1.10	16790	0. 20			

Table 7: Robustness results of Enalapril

		Enalapril Maleate										
Para mete r	Con ditio n	Rete ntio n time (min)	Res pon se	Reso lutio n	Tai lin g	Theo retic al plate s	% R S D					
Flow	Less flow (0.9 ml)	4.00	874 623	7.42	1.1	8876	0. 1 0					
rate Chan ge (mL/	Actu al (1.0 ml)	3.88 8	895 634	7.75	1.1 5	8935	0. 1 4					
min)	Mor e flow (1.1	3.67 6	906 243	7.35	1.1 9	9012	0. 2 5					

	ml)						
Orga nic Phas e chan	Less Org (36: 64)	4.16 9	865 241	7.31	1.1 3	8839	0. 2 6
	Actu al (40: 60)	3.88 4	895 201	7.71	1.1 8	8921	0. 1 4
ge	Mor e Org (44: 56)	3.54 2	915 487	7.24	1.2	9061	0. 1 5

Table 8: Assay of Diltiazem HCl and Enalapril Maleate

Medi catio n	Res pon se	Avg sa mp le are a (n= 2)	Std . Co nc. (µg /m l)	Sa mp le Co nc. (µg /m l)	La bel am ou nt (m g)	St d pu rit y	Am ou nt fou nd (µg /m	% as sa y
Diltia zem HCl	352 164 9 353 487 8	352 826 4	150	150	15 0	99. 9	147 .75	98 .5
Enal april Male ate	245 847 6 247 143 8	246 495 7	100	100	10 0	99. 8	100 .28	10 0. 3

Table 9: Forced Degradation results for Diltiazem HCl and Enalapril Maleate

	Dilti		Enalapril Maleate							
% Deg rad atio n	Re sp on se	% A S S A y	% D e g	P u ri ty A n gl e	Pu rit y Th res hol d	Ar ea	% A s s y	% D e g	P u ri ty A n gl e	Pu rit y Th res hol d
Con trol	26 53 48 7	1 0 0	0	1. 0 5 8	7.3 45	89 57 46	1 0 0	0	0. 6 7 6	3.9 54
Aci d	25 93 00 8	9 7. 4	2 . 6	1. 0 6 2	7.3 62	88 64 78	9 8. 9	1 1	0. 6 5 4	3.9 36
Alk	23	8	1	1.	7.3	78	8	1	0.	3.9

	44		_	_	0.5	0.5		_		-4
ali	11	6.	3	0	27	85	8.	2	6	51
	47	9		5		14	0		1	
	9		1	4				0	7	
Per	22 54	8	1 5	1. 0	7.3	77	8	1 3	0. 6	3.9
oxi	10	4.		0	52	75	6.		3	74
de	3	7	3	4	32	96	8	2	7	74
	26		3	1.					0.	
Red	04	9	2	0	7.3	87	9	2	6	3.9
ucti	_	7.		_		13	7.		-	
on	72	9	1	2	39	25	2	8	6	28
	2			6					1	
The	23	8	1	1.		86	9	3	0.	
rma	84	9.	0	0	7.3	54	6.		6	3.9
1	70	6		7	21	02	6	4	4	35
1	4	U	4	8		02	0	т	1	
Pho	25	9	3	1.		88	9	1	0.	
	81		3	0	7.3	24	8.	1	6	3.9
toly	98	7.		8	68				7	49
tic	7	0	0	3		61	5	5	4	
Hand	26	9	1	1.		00	9	0	0.	
Hyd	19		1	0	7.3	88		U	6	3.9
roly	52	8.		5	43	82	9.		8	05
sis	1	4	6	5		38	1	9	2	
					l					

Conclusion

The HPLC approach that has been devised for the measurement of certain medications is quick, easy, precise, accurate, reliable, and cost-effective. The solvents and mobile phase are cheap, easy to make, dependable, sensitive, and quick to prepare. The sample recoveries were consistent with the promises made on the labels, which means that the formulation receivers did not interfere with the estimate. This means that the medications may be routinely tested in labs. It has been concluded that the suggested methods, which are both simple and brief, would be the most useful for analysis because the system validation parameters of the HPLC method have demonstrated satisfactory, accurate, and repeatable results (without recipient interference, of course). The present study found that the RP-HPLC stability indicating test technique was easy to use, yielded correct results, was highly specific, and did not interact with either the placebo or degradation products. Therefore, they may be used for the normal evaluation of Diltiazem HCl and Enalapril Maleate.

Funding

Nil

Acknowledgement

Not Declared.

Conflict of Interest

No Conflict of interest

Informed Consent and Ethical Statement

Not Applicable.

References

- Shubhangi R. Mali, Karishma R. Gulave, et al., Development and validation of RP-HPLC method for the simultaneous estimation of Enalapril Maleate and Diltiazem Hydrochloride in combined dosage form: International Journal of Novel Research and Development, 2023; 8(7):1-6.
- Sidhdhapara MJ, Biraju P & Ashok P. Development And Validation Of Rp-Hplc Method For Simultaneous Estimation Of Cilnidipine And Olmesartan Medoxomil In Their Combined Tablet Dosage Form International Journal of Pharmacy and Biological Sciences. 2014; 4(1): 157-160. 6.
- 3. Amit SM, Manjusha ND, Sanjay DS. Developement and validation of analytical method for simultaneous Estimation of cilnidipine and olmesartan medoxomil in bulk and tablet Dosage form by rp-hplc. International Journal of Pharmacy and Pharmaceutical Sciences. 2014; 6(7): 508-511.
- Ghelani NC, Dadhania K, Faldu S. Analytical Method Development and Validation for Simultaneous Estimation of Olmesartan Medoxomil and Cilnidipine in their Combined Pharmaceutical Dosage form by RP-HPLC Method. PharmaTutor. 2014; 2(7); 142-148.
- 5. Heyden, Y. Vander; S.W. Smith; et al. "Guidance for robustness/ruggedness tests in method validation". Journal of Pharmaceutical and Biomedical Analysis. Elsevier. 2001; 24 (5–6): 723–753
- Purnima D. Hamrapurkar, Kamalesh K. Gadapayale Optimization and Validation of RP-HPLC Stability Indicating method for determination of olmesartan medoxomil and Its degraded product. International Journal of Applied Science and Engineering. 2013;11(2):137-4713.
- Mohammed Safhi M, Nagaraj Manohara Y. Development and validation of a rapid stability indicating chromatographic determination of cilnidipine in bulk and dosage form. Research Journal of Pharmacy and Technology. 2013;6(3):296-99.
- 8. Manzoor Ahmed, Rashmi D.R, Satishkumar Shetty A, Anil Kumar S.M, Ravi M.C, Kuppast I.J. Rp-hplc method development and validation for simultaneous estimation of cilnidipine and olmesartan medoxomil in combined tablet dosage form. World journal of pharmacy and pharmaceutical sciences. 2015; 4(1): 785-795.
- Anuradha. V, Rashmita. G, Rameezuddin. MD, Gayatri. P, Ramesh. TDevelopment and validation of sensitive spectrophotometric method for estimation of olmesartan medoxomil in pharmaceutical dosage form. International Journal of Biological Pharmaceutical Research. 2012;3(6):796-9910.